Object-oriented database systemsin manufacturing: Selection and applications
Zhang, Qingyu

Industrial Management & Data Systems; 2001; 101, 3/4; ProQuest

pg. 97

Object-oriented database systems in manufacturing:
selection and applications

Keywords
Object-oriented computing.
Database management,
Manufacturing

Abstract

As manufacturing systems change
from island of automation to
enterprise-wise integration,
object-oriented database and
database management systems
have many superior features to
meet the new requirements.
Based on the comparison with
relational databases, this paper
discusses the selections and
characteristics of the object-
oriented database and database
management systems (OODBMS)
in manufacturing and summarizes
the current studies and
applications. It helps managers to
choose appropriate OODBMS
products based on the degree of
complexity of their firm's entity
and data items. [t provides a
direction for future research.

Industrial Management &
Data Systems
101/3 [2001] 97-105

« MCB University Press
[ISSN 0263-5577]

Qingyu Zhang

The University of Toledo, Toledo, Ohio, USA

| introduction

The trend in manufacturing systems is to
change from island of automation to
enterprise-wise integration, from physical
processing workers to information
processing workers, and from management
of people/activity to management of
information about people/activities. Many
companies are going in for computer
integrated manufacturing (CIM) to improve
productivity and competitive advantage and
to meet survival needs of world class
manufacturing enterprises in the 1990s and
beyond. CIM incorporates a wide range of
information technologies such as EDP, MIS,
DDS, ES, CAD, CAM, CAPP, FMS, etc.
Although progress has been made over the
years, there are few methodologies to assist
with the system planning and development of
these complex systems (Flatau, 1988; Ciampa,
1988; Nalder and Robinson, 1987; Banerjee,
1986). This lack of methodologies has led to
many problems (Yeomans et al., 1986;
Ciampa, 1988; Gunn, 1987) such as a lack of
integration methods, lack of standards, lack
of understanding of CIM variables, island of
automation paradigm, and a confusing and
narrow definition of CIM.

Many authors (Leavitt, 1965; Galbrait, 1977;
Yadav, 1983; Grant et al., 1992) have pointed
out the importance of synergy among task,
technology, people, communication, and
structure in CIM implementation. So object-
oriented modeling of information systems
has been suggested (Bailin, 1989; Bulman,
1989; Coad and Yourdon, 1990) such as object-
oriented product modeling and design
(Usher, 1993), object-oriented shop floor
control and distributed scheduling (Kim et
al., 1996), object-oriented process planning
(Usher, 1996a, b; Gu and Zhang, 1994), object-
oriented product data exchange integration

The current issue and full text archive of this journal is available at
http:/iwww.emerald-library.com/ft

(An and Leep, 1995), and object-oriented bill of
materials (Chung and Fischer, 1994). At the
same time, making CIM work effectively calls
for a high level of interoperability,
integration, and data sharing, therefore
bringing databases and database management
systems (DBMS) to the forefront.

Today, the relational database model and
relational database management system
(RDBMS) have been the de facto industry
standard for organizing and managing data
in most CIM environments. Some authors
(Vasilash, 1990; Lockemann et al., 1991) hold
that the relational data model is very
powerful and serves as a bridge to connect
the islands of automation. It is mature and
reliable, and it has proven to be a flexible
platform for evolution toward new
applications, furthermore, the relational
model is based on the formal mathematical
model while the object-oriented model is not.
Although the object-oriented model
incorporates many useful concepts such as
inheritance, abstraction, behavior
encapsulation, reuse, and message passing, it
can not be as robust and rigorous as one that
is grounded in theory. In contrast, in recent
years, many other scholars (Schatz, 1988;
Tonshoff and Dittmer, 1990; Cattell, 1991;
Rasmus, 1991; Gomsi and DeSanti, 1992) have
stated the limitations and inadequacies for
using RDBMS for CIM and lean toward
object-oriented database management
systems (OODBMS). Especially an object-
oriented approach to modeling integrated
systems is emphasized by many authors
(Motavalli, 1997; Do, 1997, Watterson, 1998)

| Database requirements of CIM
applications

CIM encompasses the use of computers and
the integration of all activities necessary to
transform purchased materials into
products, to deliver products to customers,
and to support the performance of
production. A CIM system is created by

(97]

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwv.manaraa.com

Qingyu Zhang
Object-oriented database

systems in manufacturing:

selection and applications

Industrial Management &
Data Systems
101/3 [2001] 97-105

[98]

superimposing an information system and
decision support system over the
manufacturing infrastructure including
facilities, products, and material flow. The
hub of the CIM information system is a
DBMS and database, which integrates all the
information on the essential aspects of a
company’s manufacturing activities so that it
is shareable among the subsystems. Tonshoff
and Dittmer (1990) state that today
substantial heterogeneity exists in data
processing in production systems where all
processing systems maintain their own data.
Such subsystem-oriented data management
creates some apparent problems: data
redundancy, data inconsistency, expensive
integration of systems, and minimal
manufacturing transparency. This is further
reinforced by Doll and Vonderembse (1987),
who state that an effective implementation of
CIM would require a shared database, a high
level of data management capacity and
communication network linking engineering
(CAD, CAE). manufacturing (CAM, CAPP,
GT, AGVS, JIT, MRPII), and business
information systems (product entry/exit,
product design and process selection, quality
management). The heart of CIM information
resource management is the concept of data
management.

The next generation manufacturing
applications require new data management
approaches and the following requirements
have to be addressed (Joseph et al., 1991).

Rich data modeling

Object-oriented concepts can be used to
model application data and relationships in a
natural manner, many applications need to
deal with persistent data (data that live after
the processes that created them terminate)
and share the data among multiple users.

Query access to objects

It must be possible for large application to
navigate through each object by a query and
retrieve definition of all functions, thus
retrieval based on predicates needs to be
supported.

Sharing of objects among application
systems

It is imperative that the database can handle
data generated by different programming
languages. Since adaptability to change is
crucial to database, it must be possible to use
old data (objects) in new environments
(languages).

Seamless
It is imperative that the integration of a
database. with the rest of the programming

environment is achieved in a nonobtrusive
manner, that is, the database supports as rich
a data model as those found in programming
languages.

Transactions appropriate for cooperative
design work

Long-duration transactions (such as CAD)

need to lock data for the entire duration of
transactions in cooperative design work.

Support for the evolution of object
instances and classes

Application programs are not static entities,
they undergo change. So it is necessary to
support for life cycle schema evolution.

Distributed, platform independent, object
storage

The next generation applications deal with
large gigabytes of information of varying
size, which need to distribute storage. Such
environments may be heterogeneous, and
data storage must be platform independent
and migrate gracefully from one generation
of hardware and operating system platforms
to the next.

Other requirements

Some baseline requirements like adequate
performance, reliability, robustness, and
easy-to-use interfaces will remain applicable.

| Review of relational DBMS

The core of a typical database includes the
application data itself; the data dictionary,
which contains the description of the
database; and overhead data, consisting of
linked lists, indexes, views, and similar data,
which are required to store the relationships
among the data. The role of the DBMS is to
manage all aspects of the database, and to
serve as the sole interface between the
database and all other applications. Database
technology has undergone three main
paradigm shifts, starting with first-
generation DBMS in the 1970s (hierarchical
and network), through second generation
DBMS in the 1980s (relational), to the third
generation DBMS in the 1990s (object-
oriented/hybrid).

The relational model, first proposed by Dr
Codd (1970), has achieved the greatest
acceptance among all the approaches to data
modeling and DBMS design, and is de facto
the industry standard. The prime reason for
the success of the relational approach is its
firm foundation on relational mathematics,
end-user friendliness, and quick response to
SQL queries. Relational DBMS present data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyapaw.manaraa.com

Qingyu Zhang
Object-oriented database

systems in manufacturing:
selection and applications

Industrial Management &
Data Systems
101/3 [2001] 97-105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyapaw.manaraa.com

to users in the form of simple two-
dimensional flat files or tables, called
relations. If two tables share a common field
(attribute), called primary/foreign key, the
relational model can relate any data stored in
one table to any data stored in the other. This
cut-and-paste capability of the relational
model is the source of its enormous
flexibility. The relational model uses eight
operators (select, project, join, union,
intersect, difference, product, and divide)
from relational algebra which have come to
be implemented in a standardized form called
structure query language (SQL). Integrity
rules (entity integrity, referential integrity,
and business integrity) not only provide
integrity of data structure but also realize the
complex business rules. Normalization
concepts in the relational model eliminate
various types of modification anomalies that
may arise due to insertion, deletion, and
updating of information in a database.

The analysis and design of a relational
database involves three levels of abstraction,
namely, conceptual, logical, and physical.
The conceptual design entails modeling real
world entities using a high level semantic
model, e.g. entity-relationship (ER) diagrams,
proposed by Peter Chen in MIT. The ER
diagram employs the concept of entities,
their attributes, and their relationships for
modeling purpose. Logical design represents
real world entities as data values in a
symbolic model, e.g. the relational model,
using constructs such as primary and foreign
keys, domains, and referential integrity
through a normalization process. Such a
normalization process depends on the
concept and diagram of functional
dependence, proposed by E.J. Date, a famous
implementer. Physical design represents
symbolic values and access paths as bits
and bytes on tracks and sectors of disk
drives, e.g. cluster table, hash index, and
denormalization.

The relational model has been widely
applied in business organizations such as
airlines, insurance companies, bankers,
manufacturers, government agencies, and so
on. The data they use are alphanumeric and
cast in a record-oriented format. But real
world objects for many applications such as
text and image processing, office automation
system, GIS, CAD, robotics, and CASE are
difficult to capture in a flat, record-oriented
model. In fact, only 10 percent of an
organization’s data may be characters and
numbers (Ricciuti, 1992), and the rest are in a
form that does not easily translate into rows
and columns, so very few of the data can be
identified-by-the-simple relations of tuples of

defining characteristics in relational

database schema.

RDBMS has some limitations in supporting
the design of CIM information systems. The
relational model fails to address the complex
semantics associated with 3D geometrical
graphics and image, complex nested entities,
and the like in CAD/CAE, and fails to
manage arrays and groups of data values
associated with the production control
process (Weber and Moodie, 1989), and fails to
represent bill of materials (BOM) efficiently
in MRPII, and fails to express the complex
unstructured data type such as photos, maps,
sound.

In total, the relational database provides:

« transaction management for correct,
efficient, and concurrent access by
multiple users;

» access control for limiting data access to
authorized users only;

+ long-term reliable storage of data and
recovery from media and system failure;
and

- support for one or more query language
for data definition and data manipulation.

But they are inadequate for the following

reasons:

+ lack of expressive data modeling power;

+ the so-called “impedance mismatch”
between programming languages and
database systems;

+ inadequate interactive performance to
support next application;

« lack of appropriate mechanisms for
supporting long transactions; and

» lack of appropriate mechanisms for
supporting schema evolution and version
management.

| Object-oriented and hybrid
models

Object-orientation provides a natural way to
map real world objects and their
relationships directly to computer
presentations. Fundamental concepts and
characteristics are as follows (Table I).

OODB systems (OODBs include OODB and
OODBMS) represent the confluence of ideas
from object-oriented programming languages
such as Lisp, C++, and SmallTalk, which
provide rich data abstraction capabilities
including the powerful modeling capabilities
based on the ability to define abstract data
types and construct type hierarchies that
permit property inheritance, and database
management, which provide long-term
reliable data storage, multi-user access,
concurrency control, query, recovery, and
security capabilities.

[99]

Qingyu Zhang
Object-oriented database
systems in manufacturing:
selection and applications

(ndustrial Management &
Data Systems
101/3 (2001] 97-105

[100]

Table |
OODB's concepts and features

Terms

Objects
Attributes

Message and type
Method and behavior

Encapsulation

Object identity

Class

Class composition hierarchy

Inheritance

Dynamic binding and polymorphism
Seamlessness

Secondary storage management

Persistence

Transactions and concurrency
control recovery

Query facility

Design transactions
Change management

Meaning

Entities that are used to represent abstract or concrete real-world things

The set of values of the local state of an object (called instance
variables, properties, data members, or slots)

The external requests; the collection of all messages

Change mode in response to message; the collection of all methods of an
object

The local state and method not visible to the users of the objects

A unique identifier, which is a logical pointer

The means of grouping objects with the same attributes and behavior

The domain of an attribute may be a class that, in turn, may have
attributes with domains as classes (nested structure)

The new class derives from the old class and inherits all attributes and
methods of the original class

The ability to bind message to different methods depending on type

Integration of the database with the rest of the programming
environment in a nonobtrusive manner

Efficient data access by supporting clustering, index, buffering, and query
optimizations

Existence of objects beyond the life time of the processes that create
them

Concurrent access to data by means of atomicity, controlled sharing via
locks, serializability

Efficient high level declarative access to objects in addition to
navigational programmatic access

Long running and nested transactions

Database support for managing the evolutionary life cycle of objects and

classes

These models have emerged in an attempt to
store, search and manipulate data about
objects which have complex inner data
structures. Object-oriented database
management systems (OODBMS) are systems
which are designed from scratch, whereas
hybrid DBMS are some combination of
RDBMS and OODBMS. Traditional DBMS
including RDBMS store just data, without the
procedure required to manipulate the data.
This provided the long sought-after
independence between application programs
and their operational data.

In contrast, OODBMS store objects. An
object contains data about an entity, and also
the methods that process those data. An object
may be anything to which a concept applies,
e.g. a number (including lists and arrays), a
document or graphics (vector or bit map), a
sound or an image, or even procedure and self-
adaptation (e.g. a join command under certain
conditions or a self-referential conditional
change within the database itself). Whereas in
conventional DBMS, any kind of procedure
can process data, in OODBMS the data can
only be accessed through methods stored with
them as part of a class. Objects can be
composed of other objects, which in turn can
be composed of other objects, and so on. This
enables.the.capture of highly complex data

structures. A major difference between the
two approaches is that RDBMS databases are
passive, meaning that they contain only data.
OODBMS databases are active, because an
attempt to read or update the data would
trigger certain action automatically. This is
known as instilling intelligence in the
database just like semantics-capturing
schema being used in Al

Unlike the relational database model, the
object-oriented database is not based on a
formal database model, but a collection of
concepts such as data and behavior
encapsulation, inheritance, etc., which allow
the OODBMS to capture more of the
semantics of the real world. The flexibility in
the use of subclasses and superclasses, and
the ability to handle multi-valued attributes,
further increase the semantic richness of
OODBMS. Encapsulation combines certain
processes that are themselves characteristics
of the objects which incorporate the methods
associated with the objects, and thus the
programmer no longer has to write code to
manipulate objects. Inheritance provides the
capacity to build up new objects from
existing objects without having to redefine
attributes and methods. Further, OODBMS
has the virtue of “seamless persistence” (a
seamless database coexists with the rest of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Qingyu Zhang
Object-oriented database
systems in manufacturing:
selection and applications

Industrial Management &
Data Systems
101/3 [2001] 97-105

the programming environment with a
minimum of friction), and alleviates
impedance mismatch, that is, spending too
much effort getting the data structures of the
programming language to make sense with
those of the data manipulation languages
(DML) (Braham, 1991).

Although OODB technology has great
potential, OODBMS is not free from
limitations, for example, the lack of a strong
underlying theory and the lack of a
standardized easy-to-use query language like
RDBMS’s SQL, and the variety of commercial
products and research prototypes indicates
that consensus and standards, feedback and
improvement, benchmarks are just beginning.

Given the relative immaturity of OODBMS
and the enormous investment in current
RDBMS, there is a great deal of activity in
terms of developing hybrid models, which
incorporate both models. There are two
general methods for achieving this. The first
approach simply adds an additional layer on
top of the existing RDBMS, to provide object-
oriented capabilities (e.g. Oracle 8i). This
preserves all the work and experience gained
in developing highly successful RDBMS
products. The second approach involves
extending the relational database to
accommodate object-oriented data. Thus,
special extensions to existing products would
have to be built to accommodate the complex
data structures.

The OpenODB product (Hewlett-Packard),
which most closely resembles the hybrid
model conceptually, combines the old with
the new by building an object database
manager on top of all base/SQL, a more
traditional DBMS. It is expected to allow
users to query either relational or object data
using a query language called object SQL
(0SQL) developed by Hewlett-Packard.

POSTGERS is another existing hybrid
DBMS with its own query language called
POSTQUEL (Heintz, 1991). Apart from
OpenODB and POSTGERS, there are few
other commercial offerings for hybrid
DBMS since the knowledge in this area is yet
to mature fully. Other limitations are
relatively high system cost and low
performance due to the interaction of
application programs written in non-object-
oriented programming languages such as C
or Cobol, with the object-oriented front end,
which can really slow down the system
(Gomsi and DeSanti, 1992).

| DBMS selection

Although O0ODBs will support next
generationsapplications such as CAD, CASE,

CAM, multimedia and hypermedia
information system, and artificial
intelligence expert systems in
manufacturing, OODBs are not expected to
replace conventional databases in
commercial applications for several years.
Relational databases, their extensions, and
0OO0ODBs will coexist to support different
activities of an enterprise (Joseph et al., 1991;
Parker, 1997).

In total, we can select CIM DBMS
according to the company’s degree of
complexity in two dimensions: entity and
data item (Bordoloi et al., 1994) as Table II
suggests.

| Survey of OODB products and
research prototypes

The CACTIS system represents the first
effort to develop an OODBMS from scratch
(Hudson and King, 1988). On the other hand,
work on extending object-oriented
programming languages has produced
GemStone, which is relatively the most
complete of the commercially available
OODBMS (Maier and Stein, 1986). It is based
on the Smalltalk language, which provides
capabilities such as abstract data tying,
creation of complex objects, and object
sharing. Ontos is also a commercial object-
oriented database system by Ontologic. The
basic product classifications (Table III) and
comparison of OODBs (Table IV) are as
follows:

I An example

In the following section, we give an example
about how GemStone systems can be used
compared with ORACLE, a typical relational-
object hybrid database management system.
GemStone is a commercial OODB system
from Servio Logic Development Corporation.
It offers one uniform language to its
programmers: QOPAL, which is a modified
version of SmallTalk-80. OPAL is to
GemStone what PL/SQL is to Oracle. It is a
complete language with assignment,
conditional, and interaction constructs.
GemStone is designed to increase the
database modeling power and reduce the
development time of applications with
complex information needs. Such
applications include office information
systems, CAD, and documentation of
complex mechanical systems. The three
principal concepts of the GemStone object
model are object, message, and class. Theses
correspond to record, procedure call, and
record type in relational database systems.

[101]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyapaw.manaraa.com

Table Il
Selection dimensions and criterion of DBMS

Qingyu Zhang
Object-oriented database
systems in manufacturing:

selection and applications pimensions Criterion Simple Complex
g‘ftfg;i'tg"nfs”ageme”t & Entity Entity identification Specific (e.g. part) Abstract (e.g. shipment)
101/3[2001] 97-105 Entity evolution Static Dynamic
Y Entity complexity Independent/non-nested Nested/objects within objects
Entity reuse Low High
Data item Data type Fixed number of alpha Unstructured (user defined,
Data attribute content Numeric data types and voice, 3D graphical)
operators Arrays and group attributes
Single-valued
DBMS Relational Hybrid Object-oriented
Table 1l

Overview of product classifications

Object programming

Product category language bindings

Database engine Database storage format

Persistent language Yes None Same as language

RDBMS None Yes Tuples

Obj.-rel. hybrid Yes Not all Tuples and objects

00DBMS Yes Yes Objects
Table IV
The characteristics of all kinds of OODBs
Database Gemstone IDB Matisse Objectivity ObjectStore Ontos OpenODB UNI Poet Versant
Architecture 00 00 Semantic 00 00 00 Ex/rel Ex/rel 00 00
Server based y n n y n n y y n y
Client based y y y y y y n y y y
Navigational y y y y y y n n y y
Long transaction y y Possible y y y n Scheme n y
Checkin/checkout y n n y y Scheme n n Scheme y
Versioning y y y y y n n Scheme y y
Lock level Class Object Object Object Page Page Block Record Object Object
Buffering y y y y y y y y y y
Blocking y y y y y y y y y y
Indexing y y y y y y y y y y
Compression y n n y n n n n n n
Clustering y y y y y b y y n y

Note: ex/rel = extended relational

In the OPAL, classes consist of data structure
definition and a collection of operations
called methods. The form of a method
definition is:
Method <class name>
<message format>
<body of method>

%

Consider a common case: In order to define
and manipulate employee records in one
firm, with the software of Oracle, we define
table emp with three attributes: emp [empNo,
name, salary]. Then we use PL/SQL to write
direct SQL, procedures, functions, triggers,
and packages to manipulate it. But in OPAL,

[102]

we present it in an object-oriented way as

follows.
Object
Subclass: “EmpType”
InstVarNames: #[“name”, “empNo”,

“salary”]
Constraints: #[
#[#name, String],
#[#empNo, Integer]
#[#salary, Integer]
1.
Method: EmpType
getSalary

“salary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Qingyu Zhang
Object-oriented database
systems in manufacturing:
selection and applications

Industrial Management &

Data Systems
101/3 [2001] 97-105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Method: EmpType
SetSalary: n
Salary := n

0()

For the queries, “find all the employees
whose salary is greater than 20,000” and
assume that all employee objects are stored
in a set called Employees.
OPAL: highPayEmps := Employees
select: [:e | (e getSalary) > 20,000]
PL/SQL: SELECT * FROM emp WHERE
salary > 20,000

The difference is that the OPAL accesses
encapsulated objects through methods with
message passing; Oracle directly operates the
table with SQL. If we want to combine the
table record with programming, we have to
use cursor and interactive loop in Oracle.

GemStone has the following main
advantages as OODBMS:

« Sharing of objects: GemStone provides a
distinctive list of dictionaries called a
symbolist. This list can be shared and acts
like a file directory. Thus, it is conducive
to a multi-user environment.

+ GemStone has security on the systems
level and object level.

+ Method execution: GemStone allows the
designers to choose to copy an object’s
state to client side or to directly execute a
message remotely on the GemStone
Server.

» GemStone has uniform language, which
prevents impedance mismatch.

| conclusion and implications

This paper provides a survey and summary
of OODBMS products and research
prototypes. The characteristics and features
between the relational DBMS and OODBMS
and among all kinds of OODBs are compared
and described. OODBMS has superior
features to meet the new requirements in
manufacturing.

For managers, this paper helps a firm to
choose an appropriate product based on the
degree of complexity of their firm’s entity
and data items (Table II). If their firms need
to define and operate a lot of complex entity
types (e.g. sound, bitmap, and graphics) and
complex relations (e.g. whole-and-part
relation), they do need to consider adopting
object-oriented database systems, at least
hybrid systems. Then the firm decides to buy
what kind of OODBMS based on the analysis
of cost and benefit with regard to the specific
product characteristics (Tables Il and IV and
the firm’s.current information architecture).

From a strategic perspective, a firm has to
renew their technological capability in time,
otherwise, they will fall far behind and can
never catch up. Currently, it seems that
programming languages, database
management systems, and systems analysis
and design approaches converge to an object-
oriented philosophy. Thus, OODB has a great
potential to become a mainstream product.
Thus, whether a firm adopts OODB is not the
issue that involves solving current
operational problems, but the one that is
related to the strategic reconfiguration of the
organizational technological capability.

For researchers, given the immaturity of
the OODB field in manufacturing, the
following issues are likely to receive more
attention in the next years:

« Access control — Because OODBs store
active objects, it is possible for objects to
perform their own access control. So an
interesting issue is how access control
will interact with querying, since queries
are generally performed under control of
the database rather than the application.

« Remote database access - OODBs can
access heterogeneous databases and
impress the users with a single OODB
being accessed, so how to make the
“foreign” databases compliant to ensure
atomicity.

« Interlanguage sharing — Accommodating
persistence in single mainstream
programming language is supported by a
number of commercial OODBs and
research prototypes such as SmallTalk in
Servio Corporation’s GemStone (Purdy et
al., 1987), Common Lisp in TI Zeitgeist
(Ford et al., 1988), and C/C++ in Ontologic
Ontos. But achieving seamless persistence
with respect to multiple host languages
that share persistent objects is still a
research issue.

« OODB standardization and benchmarks —
To meet interoperability and interchange
ability, consensus on OODB functionality
is necessary. In January 1989, the OODB
task group (OODBTG) recommended
ASC/X3 as the existing standard based on
glossary, reference model, operational
model, interface, and data exchange. In
April 1989, the object management group
(OMG) issued a common object request
broker architecture (CORBA) standard
(all communication goes through the
object request broker) to the industry for a
common enterprise-wide QOODB system
including CAD, CASE framework. So
there is growing interest in building
benchmarks for standard conformance
testing to certify OODB interoperability
compliance.

[103]

Qingyu Zhang
Object-oriented database
systems in manufacturing:
selection and applications

Industrial Management &
Data Systems
101/3 [2001] 97-105

[104]

» Enterprise-wide database systems — How to
effectively integrate, express, and manage
the whole engineering, manufacturing,
and business process data in an OODB (or
distributed) with known OO technology to
achieve efficiency and effectiveness is the
main concern in the next few years.

References

An, D. and Leep, H.R. (1995), “A product data
exchange integration structure using PDES/
STEP for automated manufacturing
applications”, Computers and Industrial
Engineering, Vol. 29 No. 4, pp. 711-15.

Bailin, S.C. (1989), *An object-oriented
requirements specification method”,
Communications of ACM, Vol. 32 No. 5.

Banerjee, S.K. (1986), “Information systems
design for CIM - a methodology”, in
McGeough, J.A. (Ed.), International
Conference of Computer-Aided Production
Engineering, Edinburgh.

Bordoloi, B., Agarwal, A. and Sircar, S. (1994).
“Relational or object-oriented or hybrid?”,
International Journal of Operations and
Production Management, Vol. 14 No. 9,
pp. 32-44.

Braham, J. (1991), “Engineering your way to the
top”, Machine Design, Vol. 63 No. 17, pp. 65-8.

Bulman, D.M. (1989), “An object-based
development model”, Computer Language,
August.

Cattell, R.G.G. (1991), “What are next-generation
database systems?”, Communications of the
ACM, Vol. 34 No. 10, pp. 31-3.

Chung, Y. and Fischer, G.W. (1994), “A conceptual
structure and issues for an object-oriented
bill of materials data models”, Computers and
Industrial Engineering, Vol. 26 No. 2, pp. 1-339.

Ciampa, D. (1988), Manufacturing’s New Mandate,
Wiley, New York, NY.

Coad, P. and Yourdon, E. (1990), Object-Oriented
Analysis, Prentice-Hall, Englewood Cliffs, NJ.

Codd, E.F. (1970), “A relational model of data for
large relational databases”, Communications
of the ACM, Vol. 13, June, pp. 377-87.

Do, N.C. (1997), “Constraint maintenance in
engineering design system: an active object-
oriented approach”, Computers and Industrial
Engineering, Vol. 33 No. 3/4, pp. 643-7.

Doll, W. and Vonderembse, M. (1987), “Forging a
partnership to achieve competitive
advantage: the CIM challenge”, MIS
Quarterly. June, pp. 205-20.

Flatau, U. (1988), “Designing an information
system for integrated manufacturing
systems”, in Compton, D.W. (Ed.), Design and
Analysis of Integrated Manufacturing

Systems, National Academy Press,
Washington, DC.

Ford. S. et al. (1988), “Database support for object-
oriented databases”, Proceedings of the
International Workshop on Object-Oriented
Database;Systems, pp. 23-42.

Galbraith, J.R. (1977), Organizational Design,
Addison-Wesley, Reading, MA.

Gomsi, J. and DeSanti, M. (1992), “A technical
comparison of relational and object-oriented
data bases for manufacturing applications”,
Data Resource Management, Winter, pp. 40-7.

Grant, D., Ngewenyama, O. and Klien, K. (1992),
“Modeling for CIM information systems
architecture definition”, Computers in
Industry, Vol. 18 No. 2.

Gu, P. and Zhang, Y. (1994), “OOPPS: an object-
oriented process planning system”,
Computers and Industrial Engineering, Vol. 26
No. 4, pp. 709-31.

Gunn, T. (1987), Manufacturing for Competitive
Advantage, Ballinger, Boston, MA.

Heintz, T. (1991), “Object-oriented database and
their impact on future business database
applications”, Information and Management,
Vol. 20, pp. 95-103.

Hudson, S.E. and King, R. (1988), “The CACTIS
project: database support for software
environments”, IEEE Transactions on
Software Engineering, Vol. 14 No. 6, pp. 709-19.

Joseph, J.V., Thatte, S.M., Thompson, C.W. and
Wells, D.L. (1991), “Object-oriented databases:
design and implementation”, Proceedings of
the IEEE, Vol. 79 No. 1, pp. 41-54.

Kim, K.H., Bae, J.W., Song, J.Y. and Lee, H.Y.
(1996), “A distributed scheduling and shop
floor control method”, Computers and
Industrial Engineering, Vol. 31 No. 3/4,
pp. 583-6.

Leavitt, H. (1965), “Applied organizational change
in industry: structural, technological and
humanistic approaches”, in March, J. (Ed.),
Handbook of Organizations, Rand McNally,
Chicago, IL.

Lockemann, C.P., Kemper, A. and Moerkotte, G.
(1991), “Future database technology: driving
forces and directions”, Future Generation
Computer Systems, Vol. 7, pp. 31-3.

Maier, D. and Stein, J. (1986), “Development of an
object oriented DBMS,” ACM Sigplan, Vol. 21
No. 11, pp. 472-82.

Motavalli, S. (1997), “Feature-based modeling: An
object oriented approach”, Computers and
Industrial Engineering, Vol. 33 No. 1/2,
pp. 349-52.

Nalder, G. and Robinson, G. (1987), “Planning and
designing and implementing advanced
manufacturing technology”, in Wall, T.,
Clegg, C.W. and Kemp, N.J. (Eds), Human
Side of Advanced Manufacturing Technology,
Wiley, New York, NY.

Parker, K. (1997), “Are objects client/server?”,
Manufacturing Systems, Enterprise Systems
for Mid-sized Manufacturers, supplement
January, pp. 16A-24A.

Purdy. A., Schuchardt, B. and Maier, D. (1987),
“Integrating an object-server with other
worlds”, ACM Transactions on Office
Information Systems, Vol. 5, pp. 27-47.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyapaw.manaraa.com

Qingyu Z h-a'ng
Object-oriented database

systems in manufacturing:

selection and applications

Industrial Managgment &
Data Systems
101/3 [2001] 97-105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Rasmus, D. (1991), “Object of your desire: the
future of manufacturing systems”,
Manufacturing Systems, July, pp. 42-6.

Ricciuti, M. (1992), “The road to objects: RDBMS
vendors face an object future”, Datamation,
November, pp. 41-8.

Schatz, W. (1988), “Making CIM work”,
Datamation, December, pp. 8-11.

Tonshoff, K. and Dittmer, H. (1990), “Object-
instead of function-oriented data
management for tool management as an
example application”, Robotics and Computer
Integrated Manufacturing, Vol. 7, pp. 133-41.

TUsher, J.M. (1993), “An object-oriented approach
to product modeling for manufacturing
systems”, Computers and Industrial
Engineering, Vol. 25 No. 1-4, pp. 557-60.

Usher, J.M. (1996a). “A step-based object-oriented
product model for process planning”,
Computers and Industrial Engineering, Vol. 31
No. 1/2, pp. 185-8.

Usher, J.M. (1996b). “A tutorial and review of
object-oriented design of manufacturing
software systems”, Computers and Industrial
Engineering, Vol. 30 No. 4, pp. 781-98.

Vasilash, S.G. (1990), “Relational databases:
perhaps not very interesting - but powerful”,
Production, August, pp. 76-8.

Watterson, K. (1998), “When it comes to choosing
a database, the object is value”, Datamation,
Vol. 44 No. 1, pp. 100-07.

Weber, D.M. and Moodie, C.L. (1989), “From
database systems to information management

systems - requirement for computer
integrated manufacturing and assembly”,
Databases for Production Management,
Proceedings of the Conference on Design,
Implementing, and Operations of Databases
Jfor Production Management, No. 10-12, May,
pp. 141-65.

Yadav, S. (1983), “Determining an organization’s
information requirements: a state of the art
survey”, Data Base, Spring, pp. 3-20.

Yeomans, R.W., Coudry, A. and Hagen, P.J.W.
(1986), Design Rules for a CIM System, North
Holland, Amsterdam.

Further reading

Barry, D.K. (1996), The Object Database
Handbook: Houw to Select, Implement, and Use
Object-Oriented Database, Wiley Computer
Pub., New York, NY.

Cheolham, K., Kwangsoo, K. and Injun, C. (1993),
“An object-oriented information modeling
methodology for manufacturing information
systems”, Computers and Industrial
Engineering, Vol. 24 No. 3, pp. 337-53.

Maier, D., Stein, J., Otis, A. and Purdy, A. (1986),
“Development of an object-oriented DBMS”,
OOPSLA 86 Conference Proceedings,
pp. 472-82.

Ramamurthy, K. and King, W.R. (1992),
“Computer integrated manufacturing: an
exploratory study of key organizational
barriers”, Omega, Vol. 20 No. 4, pp. 475-91.

[105]

